

SOFC Technology R& D Needs

Steven Shaffer
Chief Engineer – Fuel Cell Development
DOE Pre-Solicitation Workshop
January 23 &24, 2008

Solid Oxide Fuel Cell Market Opportunity

Heavy Duty Truck
Diesel

Recreational Vehicles
Diesel, LPG

Truck and Trailer Refrigeration Diesel

US Military JP-8

& CHCP
Natural Gas

US Stationary – APU & CHP Natural Gas, LPG

Commercial Power Natural Gas

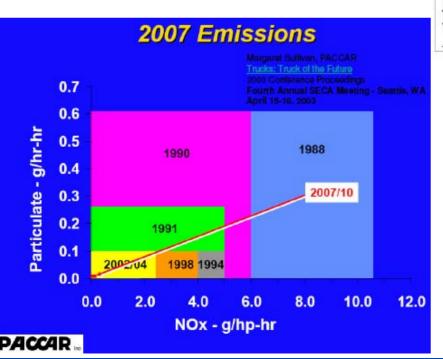
FutureGen Powerplant Coal Gas

Heavy Duty Truck Market Drivers: Increasing Cab Electrical Loads

Margaret Sullivan, PACCAR
Trucks: Truck of the Euture
2003 Conference Proceedings
Fourth Annual SECA Meeting - Seattle, WA
April 15-16, 2003

PACCAR ...

Truck load profiles identify potential power requirements of 2.5kW to 4.0kW


In-Cab Appliances Include

- CB Radios
- Cell Phones
- Televisions
- Refrigerators
- Stereos
- Lamps
- DVD / VCR Player
- Computer
- Microwave
- Coffee Maker
- Electric Blankets
- Electric AC / Heater

Heavy Duty Truck Market Drivers: Increasingly Stringent Emission & Anti-Idling Regulations

Annually, long-duration truck and locomotive engine idling...

... Emits 11-million tons of CO₂, 200,000 tons of NOx, and 5,000 tons of particulate matter

... Consumes >1-billion gallons of diesel fuel

Heavy Duty Vehicle APU Industry Collaboration

Delphi has teamed with DOE EERE and OEM's PACCAR Incorporated and Volvo Trucks North America (VTNA) to define system level requirements for a Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for the commercial trucking industry.


VOLVO

Volvo Trucks North America (VTNA), Greensboro, NC

Solid Oxide Fuel Cell Power Systems

Blowers



Electronics & Controls

Stack & Reformers

D€LPHI

Cell and Stack Development
Funded by
Solid State Energy Conversion Alliance
(SECA)

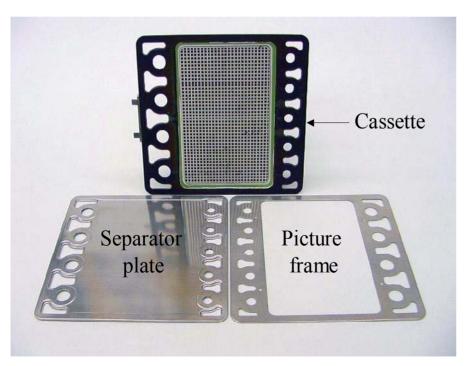
Research Priorities: SECA Cost Reduction

Risk Level

Low

Moderate

High


Gas Seals	 Glass and Compressive Seals Compliant Seals Self-healing Materials High Temperature Seal Brazes
Failure Analysis	 Models with Electrochemistry Define Operating Window Structural Failure Analysis & Design Criteria
Cathode performance	 Optimize Microstructure Mixed Conduction New Active Materials Understand Mechanism Ad-atom Modification of Surface Modification through Infiltration
Interconnect	 Coatings Electrode to Interconnect Interface Contact Material Inexpensive Processing/Removal of Tramp Elements
Anode / fuel processing	 Catalyst Surface Modification Characterize Thermodynamics/Kinetics/ Contaminants Multi-component Catalysts
Heat Exchangers/ High Temperature Blowers	Cost and ReliabilityDesign Guidelines

SOFC Stack Development

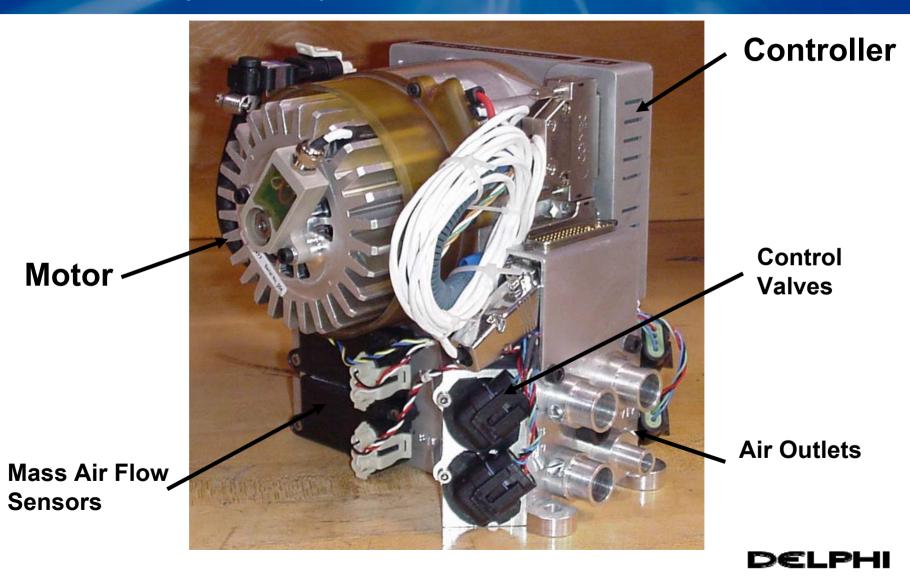
- Key Stack Characteristics
 - Cassette repeating unit configuration
 - High volume manufacturable processes (stamping, laser-welding, etc)
 - Integrated manifold and compact load frame
 - Low mass and volume

Generation 3 (30 cell), 9 Kg, 2.5 L

Subsystem Development Reformer

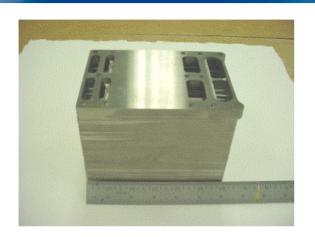
Fuel Reformer Development

- Development of reforming technology for Natural Gas, Gasoline and Diesel/JP-8 for SOFC applications
- Two main technologies are being developed:
 - CPOx Reformer
 - » Moderate efficiency
 - » Simplicity of design
 - » Not recycle capable
 - Steam Reformers
 - » High efficiency
 - » Use of water to accommodate steam reforming
 - » Recycle capable



Subsystem Development Balance of Plant Components

Air Supply Sub-System


High Temperature Manifolds

- Manifold serves as structural mounting surface for Stacks, Reformer and Cathode Air Heat Exchanger
- Routes gases to and from components
- Facilitates small package size

High Temperature Heat Exchangers

Cathode Air Heat Exchanger

Anode Tailgas Recycle Cooler

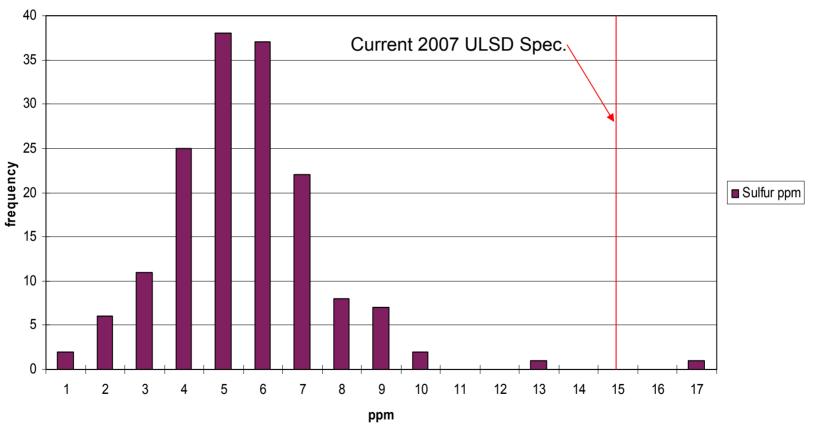
High Temperature Insulation

Thermal Insulation

 An example is micro-porous Insulation, metal wrapped using standard manufacturing process

Insulation Shell

Integrated Component Manifold

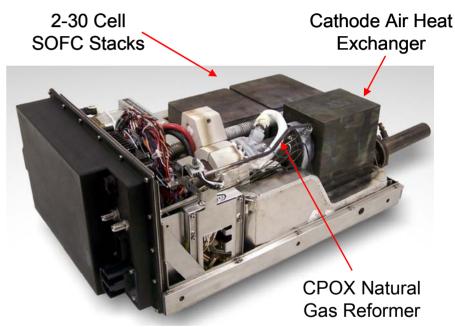

Power Electronics Components

- DC to DC Converters
- DC to AC Inverters

Diesel Fuel Survey Results Summer 2007 – Sulfur Levels

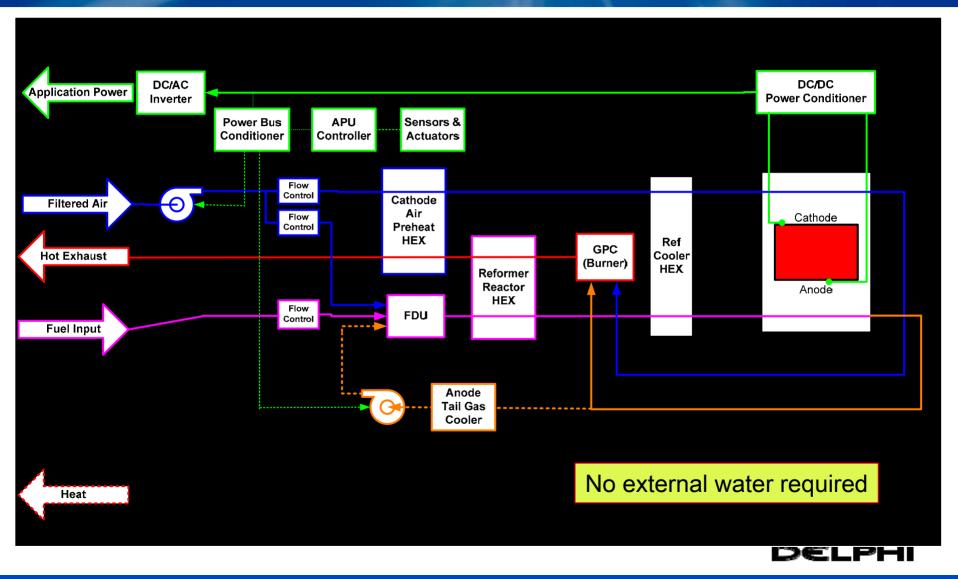
Source: Alliance of Automobile Manufacturers (US and Canada, 160 samples)

Hot Reformate Desulfurizer



SOFC System Integration

Solid Oxide Fuel Cell Power System


60-Liter Displacement 85-kg Weight

- Leading edge packaging
- High gravimetric & volumetric power density

SOFC System Mechanization With Anode Tail Gas Recycle

Summary

- Areas of Development for Small Power Plants
 - Fuel Reformers
 - Desulfurizers
 - Balance of Plant Components
 - Power Electronics
 - System Integration
 - Applications Engineering

